Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JGP_1)}(2) \setminus P_{f(3WQK_1)}(2)|=103\),
\(|P_{f(3WQK_1)}(2) \setminus P_{f(2JGP_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000111001101011011001101101111001111110010110110010000010111011100101001111100010101101011000100110010001011001011110001100111010100001011100111000010001111010110010001111110001000010011001101101011111010110110000111001000100110011111011010010111010100001111000100011100001011001100111101100100100001110000111101100110011010100101111110011110011000111101101000101011111110011100010000010011001000110101000011001100111100100011100110100000011011000111110000100101010101000000101110000011000010010001101110110010101101011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{816
}{\log_{20}
816}-\frac{296}{\log_{20}296})=141.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JGP_1
3WQK_1
177
140
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]