Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JDX_1)}(2) \setminus P_{f(5PRT_1)}(2)|=154\),
\(|P_{f(5PRT_1)}(2) \setminus P_{f(2JDX_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001101000000110001001110001100000101100111101001011110101010000001110000110011000100111010010011000110100101101010000101000110011100111111001101111100011000100011000100110100110101100100000110010000011101011000101010110110110011100001000111011000111000101101001010101010111111110010010001011001110110110111100011110001101011110000111010011100110011100101010010011111001000100010100010
Pair
\(Z_2\)
Length of longest common subsequence
2JDX_1,5PRT_1
192
4
2JDX_1,5WQR_1
218
4
5PRT_1,5WQR_1
144
3
Newick tree
[
2JDX_1:11.07,
[
5PRT_1:72,5WQR_1:72
]:39.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{541
}{\log_{20}
541}-\frac{156}{\log_{20}156})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JDX_1
5PRT_1
144
99
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]