Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JDI_1)}(2) \setminus P_{f(7MAK_1)}(2)|=168\),
\(|P_{f(7MAK_1)}(2) \setminus P_{f(2JDI_1)}(2)|=18\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000101010011000111100010100010110110111010110010100110100110110101010011111110001100101100011110111100111011011101101011110010001110111111010100110011011001111101000111100001000111001100001001000000100101111000001101100100101100011101010011110011100100110010001001111000100011100010111001110010110110100011001101001111101011111000110101011001101001011100011001101110111010011011000110011101010110000111110110010110001100110100110010001111000111101110101001010010010011100110000111101000101000001010011001111101
Pair
\(Z_2\)
Length of longest common subsequence
2JDI_1,7MAK_1
186
3
2JDI_1,1VAV_1
160
4
7MAK_1,1VAV_1
150
3
Newick tree
[
2JDI_1:90.31,
[
1VAV_1:75,7MAK_1:75
]:15.31
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{609
}{\log_{20}
609}-\frac{99}{\log_{20}99})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JDI_1
7MAK_1
185
110
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]