Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JCP_1)}(2) \setminus P_{f(1SXP_1)}(2)|=120\),
\(|P_{f(1SXP_1)}(2) \setminus P_{f(2JCP_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001010100001111010001000100001101001100011010010111001100000111010111101010110110001101110000000000010101110000001001100101110101100010000001000000001010
Pair
\(Z_2\)
Length of longest common subsequence
2JCP_1,1SXP_1
124
2
2JCP_1,9ITT_1
179
3
1SXP_1,9ITT_1
221
3
Newick tree
[
9ITT_1:11.44,
[
2JCP_1:62,1SXP_1:62
]:48.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{167
}{\log_{20}
167}-\frac{13}{\log_{20}13})=56.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JCP_1
1SXP_1
74
39
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]