Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ISQ_1)}(2) \setminus P_{f(4ZGN_1)}(2)|=70\),
\(|P_{f(4ZGN_1)}(2) \setminus P_{f(2ISQ_1)}(2)|=99\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110010011100111010011010110111010110100010001110110010001110110011101001001111110111010011101110100000111111110111001101101111010011100101011001001101010000011011010110101110111011010111001000010101011011001110110111001011111111011010110011010000010110011100111111001111111101100100110111111101100010011101000010110101
Pair
\(Z_2\)
Length of longest common subsequence
2ISQ_1,4ZGN_1
169
4
2ISQ_1,3WSU_1
169
4
4ZGN_1,3WSU_1
166
20
Newick tree
[
2ISQ_1:84.99,
[
4ZGN_1:83,3WSU_1:83
]:1.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{658
}{\log_{20}
658}-\frac{320}{\log_{20}320})=93.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ISQ_1
4ZGN_1
118
113
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]