Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2IMG_1)}(2) \setminus P_{f(4BPY_1)}(2)|=67\),
\(|P_{f(4BPY_1)}(2) \setminus P_{f(2IMG_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111011010111110111111101110001110111001101000111000001110100101101011110010011011001010101111001111100101110011000111110111010010110100000001110100000
Pair
\(Z_2\)
Length of longest common subsequence
2IMG_1,4BPY_1
142
3
2IMG_1,4URN_1
171
3
4BPY_1,4URN_1
151
4
Newick tree
[
4URN_1:83.62,
[
2IMG_1:71,4BPY_1:71
]:12.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{326
}{\log_{20}
326}-\frac{151}{\log_{20}151})=53.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
2IMG_1
4BPY_1
69
63.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]