Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2IDZ_1)}(2) \setminus P_{f(3AZR_1)}(2)|=78\),
\(|P_{f(3AZR_1)}(2) \setminus P_{f(2IDZ_1)}(2)|=105\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111010011101110000111011011000110111011001011001000111011110101000001101110100111110010111001111100111101110110101001101010001011011111101110111101010011110011011001100100111001100110001111111001110111111110011101011001100011111010010111001011100111100101101011100011
Pair
\(Z_2\)
Length of longest common subsequence
2IDZ_1,3AZR_1
183
4
2IDZ_1,6ZLY_1
158
4
3AZR_1,6ZLY_1
163
4
Newick tree
[
3AZR_1:89.04,
[
2IDZ_1:79,6ZLY_1:79
]:10.04
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{585
}{\log_{20}
585}-\frac{268}{\log_{20}268})=89.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
2IDZ_1
3AZR_1
112
104
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]