Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2HFH_1)}(2) \setminus P_{f(5YWY_1)}(2)|=39\),
\(|P_{f(5YWY_1)}(2) \setminus P_{f(2HFH_1)}(2)|=149\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100011110111100100010101100110001100000111100010001010001101100110110100101010000110010110000010010000000
Pair
\(Z_2\)
Length of longest common subsequence
2HFH_1,5YWY_1
188
3
2HFH_1,1WID_1
124
3
5YWY_1,1WID_1
176
3
Newick tree
[
5YWY_1:98.85,
[
2HFH_1:62,1WID_1:62
]:36.85
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{441
}{\log_{20}
441}-\frac{109}{\log_{20}109})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2HFH_1
5YWY_1
129
84
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]