Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2GVI_1)}(2) \setminus P_{f(4AEY_1)}(2)|=94\),
\(|P_{f(4AEY_1)}(2) \setminus P_{f(2GVI_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010111101110101000101111001100110111100000000011001010010101001101101000101110111010111110011001101010001100100010011000001001001111110111011001000011000010110101100011010001010000010101101011001000100
Pair
\(Z_2\)
Length of longest common subsequence
2GVI_1,4AEY_1
157
3
2GVI_1,2MIX_1
149
3
4AEY_1,2MIX_1
128
2
Newick tree
[
2GVI_1:80.26,
[
2MIX_1:64,4AEY_1:64
]:16.26
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{360
}{\log_{20}
360}-\frac{156}{\log_{20}156})=61.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
2GVI_1
4AEY_1
81
70
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]