Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2GGA_1)}(2) \setminus P_{f(1HOZ_1)}(2)|=80\),
\(|P_{f(1HOZ_1)}(2) \setminus P_{f(2GGA_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011000110100001101010111000100001111111010001011101001100101101111010001001110111011111101110110110100101111110010001110101000111011011001110100001001110101100101100011110101001111111001110011011100000001101111010100010110010101010101011011101000111111111111001011011101000111101001110101101011110011010100001011011000110110001111111111011011011001010000010111011010110000100011101010101110101111100100011101111111000110100101110011011011111110101000011
Pair
\(Z_2\)
Length of longest common subsequence
2GGA_1,1HOZ_1
160
5
2GGA_1,6SWI_1
176
4
1HOZ_1,6SWI_1
210
6
Newick tree
[
6SWI_1:10.87,
[
2GGA_1:80,1HOZ_1:80
]:21.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{794
}{\log_{20}
794}-\frac{339}{\log_{20}339})=123.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2GGA_1
1HOZ_1
155
135.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]