Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2GCI_1)}(2) \setminus P_{f(2GUB_1)}(2)|=64\),
\(|P_{f(2GUB_1)}(2) \setminus P_{f(2GCI_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111110110110111111110111111011101101001001011000111000011010100001101110111010111010011100011111000101000110101011100110000110010010101110111010001111101110111101111111111110000010101101111010011101111101011100001101101111000000010100111111010101111111110110111000010110101110011100000011111100010101111110100010110000100101110111110100010001011110101011100101
Pair
\(Z_2\)
Length of longest common subsequence
2GCI_1,2GUB_1
138
4
2GCI_1,1DEW_1
201
2
2GUB_1,1DEW_1
211
2
Newick tree
[
1DEW_1:11.10,
[
2GCI_1:69,2GUB_1:69
]:43.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{748
}{\log_{20}
748}-\frac{360}{\log_{20}360})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2GCI_1
2GUB_1
129
124.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]