Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2FTE_1)}(2) \setminus P_{f(5JTT_1)}(2)|=24\),
\(|P_{f(5JTT_1)}(2) \setminus P_{f(2FTE_1)}(2)|=161\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011001001101101101111111110010100111010000011001000110001011100110100010100001010011011010001100111100010001101111000101101010100101100110100001010100010111011001000010101111010010011110000100111110110001111111110010111010111101100110010101010000000110011011000011110001011101010010
Pair
\(Z_2\)
Length of longest common subsequence
2FTE_1,5JTT_1
185
4
2FTE_1,4DQN_1
158
4
5JTT_1,4DQN_1
165
4
Newick tree
[
5JTT_1:90.34,
[
2FTE_1:79,4DQN_1:79
]:11.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1125
}{\log_{20}
1125}-\frac{282}{\log_{20}282})=224.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2FTE_1
5JTT_1
283
186.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]