Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2FHS_1)}(2) \setminus P_{f(1SBI_1)}(2)|=86\),
\(|P_{f(1SBI_1)}(2) \setminus P_{f(2FHS_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111010011101110010110111011000110111000000101010011101100111000110010100111011011101011100111111001010010110001101100100001111101000110110111010011100111000111110101010100110111101101011011110011101100100111000110110001010011001111000101110101101011101111001010
Pair
\(Z_2\)
Length of longest common subsequence
2FHS_1,1SBI_1
156
3
2FHS_1,7WYW_1
199
5
1SBI_1,7WYW_1
193
4
Newick tree
[
7WYW_1:10.82,
[
2FHS_1:78,1SBI_1:78
]:25.82
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{537
}{\log_{20}
537}-\frac{262}{\log_{20}262})=78.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
2FHS_1
1SBI_1
97
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]