Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2FGI_1)}(2) \setminus P_{f(5GVX_1)}(2)|=91\),
\(|P_{f(5GVX_1)}(2) \setminus P_{f(2FGI_1)}(2)|=77\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111100001100101011000111101110111101111011110000100100111011000100001001100101101110000110111100001110111001001010001010011110000010001000100001100100110110011000010001110011100001101101111001001000000001011101111011100100000011011111101101110101111100110110010010010000001011100010111000101001100100111100000
Pair
\(Z_2\)
Length of longest common subsequence
2FGI_1,5GVX_1
168
4
2FGI_1,7XDM_1
172
4
5GVX_1,7XDM_1
166
22
Newick tree
[
2FGI_1:85.66,
[
5GVX_1:83,7XDM_1:83
]:2.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{740
}{\log_{20}
740}-\frac{310}{\log_{20}310})=118.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2FGI_1
5GVX_1
141
126
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]