Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ECP_1)}(2) \setminus P_{f(3KPV_1)}(2)|=158\),
\(|P_{f(3KPV_1)}(2) \setminus P_{f(2ECP_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011100001001100010001100110101001111100111011010111011100001001010111101010011011100010001010010100110001011110111101110110011011001010110000111000110100101100100000111000011010111111100010101010101011011111000111011011010010110100100101101000110100100110100000110010110001001001101100001110010011000110100001011110110111000010100111100001100000111011001010110111100101100100010011000111000111011110000101101011111110111110001110011100001110010010011010011000011111110001000110010011011011001010010011001001011011010011010101110101001000000010110111100010001010011011111101111001100111110011011000111100101111100010110011111010001001100101010101110111011010110101100110001111100100101111010011010000011011100100100001000110011001100110101111011101010001011000001100111100100111000001000010110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1085
}{\log_{20}
1085}-\frac{289}{\log_{20}289})=212.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ECP_1
3KPV_1
273
183
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]