Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2DYI_1)}(2) \setminus P_{f(4LAL_1)}(2)|=25\),
\(|P_{f(4LAL_1)}(2) \setminus P_{f(2DYI_1)}(2)|=139\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101101101111011011101010111101001010101101100100110011101111000011011111010101101111001000011111111010100110110110111001111011100100010011110110101001010101111110
Pair
\(Z_2\)
Length of longest common subsequence
2DYI_1,4LAL_1
164
4
2DYI_1,2BHJ_1
212
4
4LAL_1,2BHJ_1
182
4
Newick tree
[
2BHJ_1:10.77,
[
2DYI_1:82,4LAL_1:82
]:21.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{538
}{\log_{20}
538}-\frac{162}{\log_{20}162})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2DYI_1
4LAL_1
138
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]