Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2DWQ_1)}(2) \setminus P_{f(2WWW_1)}(2)|=64\),
\(|P_{f(2WWW_1)}(2) \setminus P_{f(2DWQ_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111111110110001101100101111001110100011111100001011000110100111111001011011111011001011100111010011111011001101011011101011001011000111101101000100100010100001111011011010100101100111001110110001110101110110110001101010101011000110011011110101010110101001001111011000110011011001101101101100010110100100110111010001001110101111001101111101000111010100001001011011101
Pair
\(Z_2\)
Length of longest common subsequence
2DWQ_1,2WWW_1
152
4
2DWQ_1,2XCD_1
161
3
2WWW_1,2XCD_1
177
3
Newick tree
[
2XCD_1:87.27,
[
2DWQ_1:76,2WWW_1:76
]:11.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{717
}{\log_{20}
717}-\frac{349}{\log_{20}349})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2DWQ_1
2WWW_1
121
120
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]