Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2DHR_1)}(2) \setminus P_{f(8URV_1)}(2)|=127\),
\(|P_{f(8URV_1)}(2) \setminus P_{f(2DHR_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010111000110100001011001101010011110010001001101100100100111011011111111111000110111101011110101001101111111101001100100011011110010111000101111100000001001110101100001111111000101101111011010001110110101000110101010111001011111000111111010011001111110010001010010011001111110001110100001010001101111011001011001011101011111110000110100001100111111101100111001001100010010011001100111010111110110000011100100000001001001100110000001011110000110011001100001010010011011110110010000011011101011111111
Pair
\(Z_2\)
Length of longest common subsequence
2DHR_1,8URV_1
182
4
2DHR_1,1EVM_1
208
3
8URV_1,1EVM_1
140
1
Newick tree
[
2DHR_1:10.34,
[
8URV_1:70,1EVM_1:70
]:35.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{692
}{\log_{20}
692}-\frac{193}{\log_{20}193})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2DHR_1
8URV_1
173
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]