Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2DFA_1)}(2) \setminus P_{f(7SLI_1)}(2)|=80\),
\(|P_{f(7SLI_1)}(2) \setminus P_{f(2DFA_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101011000111101000011111001011011011011011011011010111111011110111110001110100101011001111011101011110010101110101000000101111110110111111111101000010011101110111001010010111001110110010011001101110101011011011101001010100101101101100110011101011
Pair
\(Z_2\)
Length of longest common subsequence
2DFA_1,7SLI_1
136
4
2DFA_1,5OHJ_1
203
3
7SLI_1,5OHJ_1
185
4
Newick tree
[
5OHJ_1:10.02,
[
2DFA_1:68,7SLI_1:68
]:37.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{404
}{\log_{20}
404}-\frac{154}{\log_{20}154})=74.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
2DFA_1
7SLI_1
90
73
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]