Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2DAP_1)}(2) \setminus P_{f(2IID_1)}(2)|=55\),
\(|P_{f(2IID_1)}(2) \setminus P_{f(2DAP_1)}(2)|=91\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010111110101100100111001010111110001010000111011010001001011110110100110011011011001000000001100001100110111011110011011110100101111110000001111110010001100111100110001100011001001011010100000000111101100001000100110011100101011001010000011101101100100111000100110100010101000111101100100010011101101110110100100111001
Pair
\(Z_2\)
Length of longest common subsequence
2DAP_1,2IID_1
146
4
2DAP_1,7GXR_1
175
3
2IID_1,7GXR_1
201
4
Newick tree
[
7GXR_1:10.30,
[
2DAP_1:73,2IID_1:73
]:27.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{818
}{\log_{20}
818}-\frac{320}{\log_{20}320})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2DAP_1
2IID_1
168
138.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]