Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2CXC_1)}(2) \setminus P_{f(9BEE_1)}(2)|=68\),
\(|P_{f(9BEE_1)}(2) \setminus P_{f(2CXC_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000101001001011001011010001100000011111001011011101101101100111001011000001001100111110100101000011001110100000111110110010010111001111001110
Pair
\(Z_2\)
Length of longest common subsequence
2CXC_1,9BEE_1
106
3
2CXC_1,7ESV_1
147
3
9BEE_1,7ESV_1
163
2
Newick tree
[
7ESV_1:84.22,
[
2CXC_1:53,9BEE_1:53
]:31.22
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{232
}{\log_{20}
232}-\frac{88}{\log_{20}88})=46.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
2CXC_1
9BEE_1
57
45.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]