Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2CUK_1)}(2) \setminus P_{f(1COI_1)}(2)|=139\),
\(|P_{f(1COI_1)}(2) \setminus P_{f(2CUK_1)}(2)|=9\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111000111011001000110101001111101011001011111110100010101100101101110001110010101100011010001111001010101111111100110111010011101101011111010110111111101101110011111101100100101110111010011001011010011010000110000111100111110010111100011101101011111101001011111011011101110101101100000011011100111110100110111
Pair
\(Z_2\)
Length of longest common subsequence
2CUK_1,1COI_1
148
4
2CUK_1,6GIR_1
162
4
1COI_1,6GIR_1
224
4
Newick tree
[
6GIR_1:10.45,
[
2CUK_1:74,1COI_1:74
]:30.45
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{342
}{\log_{20}
342}-\frac{31}{\log_{20}31})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2CUK_1
1COI_1
117
62.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]