Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2CMY_1)}(2) \setminus P_{f(8TAQ_1)}(2)|=133\),
\(|P_{f(8TAQ_1)}(2) \setminus P_{f(2CMY_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111000110011001010010010110110001110110000011010110001011010001101000110100000010001111010011010001101011000101100011011100000100010110010111100000001011010001101101011000001001111100101011101101010000111000100010110001100
Pair
\(Z_2\)
Length of longest common subsequence
2CMY_1,8TAQ_1
140
3
2CMY_1,8XVM_1
218
4
8TAQ_1,8XVM_1
322
3
Newick tree
[
8XVM_1:15.51,
[
2CMY_1:70,8TAQ_1:70
]:83.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{244
}{\log_{20}
244}-\frac{21}{\log_{20}21})=76.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
2CMY_1
8TAQ_1
96
52
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]