Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2CHL_1)}(2) \setminus P_{f(7FZL_1)}(2)|=156\),
\(|P_{f(7FZL_1)}(2) \setminus P_{f(2CHL_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000110110001010011111111010110011010110101100100000111010110001101010001000110101110100111010001111011110100110100001010011111101100100100001100010100111101100000110110111100010100000110000001010100101000110000000010111011101101011101101001000000110000101101100011011001001001011001000010011001100010110000011100110111110001110000010000001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{486
}{\log_{20}
486}-\frac{135}{\log_{20}135})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2CHL_1
7FZL_1
133
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]