Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2CET_1)}(2) \setminus P_{f(3UZB_1)}(2)|=88\),
\(|P_{f(3UZB_1)}(2) \setminus P_{f(2CET_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001100100110111111101000101011101111011001000110100100101100000010001011001110100101011011101010100011010001100110011011101001011111010111100011011100001110011001001101001111111101011011110010111011001101010110110001001011111001010110000001011011001000111101100100101110110001100000010010001011110000101101010111010110001100111101110110111001000001101010001111001100010100000100101011011011001111010111011001011010000111101000000011000101000110001100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{826
}{\log_{20}
826}-\frac{358}{\log_{20}358})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2CET_1
3UZB_1
158
139
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]