Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BUW_1)}(2) \setminus P_{f(1GXN_1)}(2)|=65\),
\(|P_{f(1GXN_1)}(2) \setminus P_{f(2BUW_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110100100010001110101111100101011000100011000001001010101101111110011101101000110100100010010101111100110110111010010111111001000110101111101101110001010001010100111001011000001110000001011001010101000011101
Pair
\(Z_2\)
Length of longest common subsequence
2BUW_1,1GXN_1
179
3
2BUW_1,3MTK_1
144
3
1GXN_1,3MTK_1
175
3
Newick tree
[
1GXN_1:93.36,
[
2BUW_1:72,3MTK_1:72
]:21.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{541
}{\log_{20}
541}-\frac{209}{\log_{20}209})=95.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BUW_1
1GXN_1
122
99.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]