Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BUA_1)}(2) \setminus P_{f(9BLU_1)}(2)|=106\),
\(|P_{f(9BLU_1)}(2) \setminus P_{f(2BUA_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000010001000101010010110000010000001111010010001110000100110000000101000111100001001000001000100100001100001100001101011100110110001010001010000101010001100110011000011010011110101011101010000111100010000010010010110101110010101111000010101010000111110111100010110110000101011001000011010000000101100110001010001111010110101000100100110000100010010000000011001110111101100001001000001111100100101000001001000101000000010100010000100111111100100000000101100001100110010110001011010100110011111010000001111010111000010011010110011000011110101010100100110110001101010001010001001111000011111100110100111111011100111111100100000100000111101000100000001100100100100111010100010100010100111011101001100000011100110001000100110001011
Pair
\(Z_2\)
Length of longest common subsequence
2BUA_1,9BLU_1
141
4
2BUA_1,8IOV_1
120
4
9BLU_1,8IOV_1
145
4
Newick tree
[
9BLU_1:74.95,
[
2BUA_1:60,8IOV_1:60
]:14.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1242
}{\log_{20}
1242}-\frac{514}{\log_{20}514})=187.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BUA_1
9BLU_1
240
203
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]