Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BHU_1)}(2) \setminus P_{f(3NIJ_1)}(2)|=203\),
\(|P_{f(3NIJ_1)}(2) \setminus P_{f(2BHU_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000110101110100000100011101111111001011000100111010100011001111100101111111001111011101010101110110101011011010100101011011001100101101010100011100110100111011011111110100111001111011011010100111110110011111110110001110100100011001000100111111001010100010101011100001011010101010000000110011001001110011110000011011010010111000100000101010001001100111011100100110001011110100000101001101101100100000110011100100001101000011111110111011110100111001101100011011011001000011110110100110101000110001011000110010010100011010000111000000010010010111100101110011110110000111010111011001110001000101111011111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{684
}{\log_{20}
684}-\frac{82}{\log_{20}82})=175.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BHU_1
3NIJ_1
221
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]