Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BGA_1)}(2) \setminus P_{f(6OBJ_1)}(2)|=60\),
\(|P_{f(6OBJ_1)}(2) \setminus P_{f(2BGA_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00010001100001010100100011100011010101110011110000111110001000100011011000100010011100101001111001000110100011010110001000111010010010110101001011010000011111100011111011000010011011010100100010011000001011111010110011110010110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{566
}{\log_{20}
566}-\frac{227}{\log_{20}227})=96.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BGA_1
6OBJ_1
130
104
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]