Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BFD_1)}(2) \setminus P_{f(7OQN_1)}(2)|=113\),
\(|P_{f(7OQN_1)}(2) \setminus P_{f(2BFD_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010001011110101100101101011011110011000101101000101100011010001011001001100000010101010001001001101111000011110100111110000110111100010100110100111001000001101001110011011111011001010011100110111001010111011101001111100001011001000000101111011101110101010011110010001000111000111101100011010000000110010010010000011001000110011100000011000000011011001000101010111001000111010000001100100010001100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{657
}{\log_{20}
657}-\frac{257}{\log_{20}257})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BFD_1
7OQN_1
145
116.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]