Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BDT_1)}(2) \setminus P_{f(2YKG_1)}(2)|=25\),
\(|P_{f(2YKG_1)}(2) \setminus P_{f(2BDT_1)}(2)|=180\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100101101111110000000111010001010101100111110011100001111010010010101111000111001111001011100101010010101111100000110001100000011000101100100011000010000010100100110010001011101110110000000
Pair
\(Z_2\)
Length of longest common subsequence
2BDT_1,2YKG_1
205
4
2BDT_1,1WGN_1
144
3
2YKG_1,1WGN_1
261
4
Newick tree
[
2YKG_1:12.95,
[
2BDT_1:72,1WGN_1:72
]:56.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{885
}{\log_{20}
885}-\frac{189}{\log_{20}189})=192.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BDT_1
2YKG_1
246
153
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]