Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ARQ_1)}(2) \setminus P_{f(1QAZ_1)}(2)|=83\),
\(|P_{f(1QAZ_1)}(2) \setminus P_{f(2ARQ_1)}(2)|=89\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001011001111011001101010001110110100011110110010000011011010011111001000100100110100100110010011100010100001010000000010110110010010001001100000101101110101010001111011010101001100010111110100100011011010001011010010101101101101011111100110100110110001000010010000011000101011010100000100110011100110010101011000001110011001110100010011110111101001011101110011111110010001111101001
Pair
\(Z_2\)
Length of longest common subsequence
2ARQ_1,1QAZ_1
172
4
2ARQ_1,3SUF_1
183
4
1QAZ_1,3SUF_1
179
3
Newick tree
[
3SUF_1:91.95,
[
2ARQ_1:86,1QAZ_1:86
]:5.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{733
}{\log_{20}
733}-\frac{351}{\log_{20}351})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ARQ_1
1QAZ_1
132
126.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]