Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2AFM_1)}(2) \setminus P_{f(7KQR_1)}(2)|=105\),
\(|P_{f(7KQR_1)}(2) \setminus P_{f(2AFM_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111000000011110001100110100100110001011110001101100110001100100101011101001100010100010011001010100011110000000100100011111000111011110110110001101001000010101011110100111010100010100011101100101111010001011011111011111010110111001011001011000100111100001010010000011110000111100111110111011101100100000010000100100110111100101
Pair
\(Z_2\)
Length of longest common subsequence
2AFM_1,7KQR_1
175
4
2AFM_1,8ZYW_1
156
5
7KQR_1,8ZYW_1
169
3
Newick tree
[
7KQR_1:88.52,
[
2AFM_1:78,8ZYW_1:78
]:10.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{645
}{\log_{20}
645}-\frac{316}{\log_{20}316})=91.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
2AFM_1
7KQR_1
118
113
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]