Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ADU_1)}(2) \setminus P_{f(5THB_1)}(2)|=97\),
\(|P_{f(5THB_1)}(2) \setminus P_{f(2ADU_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010001101110010101111010000011000100111000000001100100011001001101000100011011011101101000100000011000110111111010010001100010110001100001001011001010110011010101000011011001000110011101010011011001100001010100001011001010011000101100111101101001001010110011001011100010000010010110111011000011011000110111000110011000011110010011110101110010100010100011101000011001000
Pair
\(Z_2\)
Length of longest common subsequence
2ADU_1,5THB_1
170
3
2ADU_1,1DAT_1
188
4
5THB_1,1DAT_1
176
3
Newick tree
[
1DAT_1:92.97,
[
2ADU_1:85,5THB_1:85
]:7.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{692
}{\log_{20}
692}-\frac{323}{\log_{20}323})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ADU_1
5THB_1
129
121
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]