Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ZYC_1)}(2) \setminus P_{f(5DXM_1)}(2)|=87\),
\(|P_{f(5DXM_1)}(2) \setminus P_{f(1ZYC_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010010010011111011110110100110000011001000000100110011111010000110001111000011011011000001110100000001001100001000000010110011011001000111000101101110000010110111100100010110100001110000100111011011001101010000010100111111011011001100101100100101011101000010100011011100010001110011001111100000110011001
Pair
\(Z_2\)
Length of longest common subsequence
1ZYC_1,5DXM_1
156
5
1ZYC_1,2EBY_1
163
3
5DXM_1,2EBY_1
161
4
Newick tree
[
2EBY_1:81.97,
[
1ZYC_1:78,5DXM_1:78
]:3.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{560
}{\log_{20}
560}-\frac{257}{\log_{20}257})=85.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ZYC_1
5DXM_1
106
98
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]