Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ZKI_1)}(2) \setminus P_{f(3TQU_1)}(2)|=62\),
\(|P_{f(3TQU_1)}(2) \setminus P_{f(1ZKI_1)}(2)|=98\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0110011100011010001111011011011101011111010001111011111011010111100000110000101000100101110101001101101100011101010010011101010110110
Pair
\(Z_2\)
Length of longest common subsequence
1ZKI_1,3TQU_1
160
3
1ZKI_1,6CTN_1
110
2
3TQU_1,6CTN_1
148
2
Newick tree
[
3TQU_1:83.12,
[
1ZKI_1:55,6CTN_1:55
]:28.12
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{336
}{\log_{20}
336}-\frac{133}{\log_{20}133})=62.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ZKI_1
3TQU_1
80
65.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]