Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ZEB_1)}(2) \setminus P_{f(6YMR_1)}(2)|=116\),
\(|P_{f(6YMR_1)}(2) \setminus P_{f(1ZEB_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111000010110001101111100101100110011111101111001011011010000011101111100110111000001000110011010101011010100111011101000000010011011001001100111100001001011100100100010001011101000100011001100101011111100011011010100100000110010100110011100011001100001101010101001111101101000100000101011010011101100010111111011010010000010011000111001100110100000010110100001101110110100111111101000010011101011101100110101000001010000001111000001100111110110101101100001110111111010100100111111000
Pair
\(Z_2\)
Length of longest common subsequence
1ZEB_1,6YMR_1
158
5
1ZEB_1,4FZB_1
189
3
6YMR_1,4FZB_1
167
3
Newick tree
[
4FZB_1:92.31,
[
1ZEB_1:79,6YMR_1:79
]:13.31
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{800
}{\log_{20}
800}-\frac{316}{\log_{20}316})=131.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ZEB_1
6YMR_1
171
136.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]