Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ZCJ_1)}(2) \setminus P_{f(6UWY_1)}(2)|=84\),
\(|P_{f(6UWY_1)}(2) \setminus P_{f(1ZCJ_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101100111100010010010110100101011001111111011011110110111011110001001011001101010001001000101010101010000001001011101110010100011101011001111100000110100110000010111100110110110110111000001001101101000110111111000111100111100001111100100100101110011101111010011110111010010110110111101100010000011101100110110001011000001110100101110011000001001000010000110001001100110110011110100101101010111000111110110111101100100000001011010100010011101011100100111101001
Pair
\(Z_2\)
Length of longest common subsequence
1ZCJ_1,6UWY_1
154
4
1ZCJ_1,1UOS_1
205
4
6UWY_1,1UOS_1
201
3
Newick tree
[
1UOS_1:10.44,
[
1ZCJ_1:77,6UWY_1:77
]:31.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{824
}{\log_{20}
824}-\frac{361}{\log_{20}361})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ZCJ_1
6UWY_1
156
139
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]