Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ZBB_1)}(2) \setminus P_{f(5LGE_1)}(2)|=9\),
\(|P_{f(5LGE_1)}(2) \setminus P_{f(1ZBB_1)}(2)|=227\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001010101011110101100010111010010011111010100011111001000010011111101010001100111000011001110101000000110111101100000111010100000110110100010111011000000111101100110100010101010111101011000101110100100111110101000111110010000100111111010100011001110000110011101010000001101111011000001110101000001101101000101110110000001110001010101010101110101
Pair
\(Z_2\)
Length of longest common subsequence
1ZBB_1,5LGE_1
236
3
1ZBB_1,1TCV_1
178
4
5LGE_1,1TCV_1
152
3
Newick tree
[
1ZBB_1:11.41,
[
1TCV_1:76,5LGE_1:76
]:36.41
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{772
}{\log_{20}
772}-\frac{347}{\log_{20}347})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ZBB_1
5LGE_1
174
109.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]