Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1YYG_1)}(2) \setminus P_{f(3RAJ_1)}(2)|=94\),
\(|P_{f(3RAJ_1)}(2) \setminus P_{f(1YYG_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101001001100111111001000110000100100110101001111000011011111010111110101010100110001001111100000101101101111111000111101011110100011110111101000100110010011110110110111000110100100010111100011010001110111011111101000101101111101000101010001111001001011011100011111010111001111100000110000111110110101111110011001010010001101000111000111001010100111010111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{614
}{\log_{20}
614}-\frac{257}{\log_{20}257})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1YYG_1
3RAJ_1
124
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]