Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1YWG_1)}(2) \setminus P_{f(1LDZ_1)}(2)|=190\),
\(|P_{f(1LDZ_1)}(2) \setminus P_{f(1YWG_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110011101110110111011110001011110011101001001100001010110010010111111000101110001001111000101100001111000110001011100111011100001101111000000000111001000000111110110001111011100101001001110110011001011001100111100111011101110101010111101111010110110010011000011101001101110111100000110001100000011010111110001101101000011000011011101000
Pair
\(Z_2\)
Length of longest common subsequence
1YWG_1,1LDZ_1
198
3
1YWG_1,8IGU_1
164
5
1LDZ_1,8IGU_1
256
4
Newick tree
[
1LDZ_1:12.35,
[
1YWG_1:82,8IGU_1:82
]:41.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{367
}{\log_{20}
367}-\frac{30}{\log_{20}30})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1YWG_1
1LDZ_1
142
76
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]