Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1YUE_1)}(2) \setminus P_{f(1ESK_1)}(2)|=203\),
\(|P_{f(1ESK_1)}(2) \setminus P_{f(1YUE_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101001100000000001101011110010001100011100000011111011001010001010011001101101000010010000010100101100001100110001110100001011101111110101100110000100000011010101001001100001001101011001010110110110011100110010001100110100000101100011101001011011001001100110010000000101011010111111101110001000001000101111011110000001100111111001100011101101100011010010011110111010010101111100110101001100000101101101001110001011111011011100
Pair
\(Z_2\)
Length of longest common subsequence
1YUE_1,1ESK_1
226
2
1YUE_1,7LPM_1
196
4
1ESK_1,7LPM_1
120
2
Newick tree
[
1YUE_1:11.11,
[
7LPM_1:60,1ESK_1:60
]:57.11
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{469
}{\log_{20}
469}-\frac{42}{\log_{20}42})=132.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1YUE_1
1ESK_1
169
92.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]