Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1XIO_1)}(2) \setminus P_{f(1NRP_1)}(2)|=154\),
\(|P_{f(1NRP_1)}(2) \setminus P_{f(1XIO_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001101101111011110110100010111000011111111101110111110010101110110010010111001111101010110110001011111100011110011110100001100110101101111111111011010000000011010001100101111101111111101111100010011101111100111011010110010000000100110001011001011100000000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{297
}{\log_{20}
297}-\frac{36}{\log_{20}36})=85.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1XIO_1
1NRP_1
110
61.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]