Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1XDD_1)}(2) \setminus P_{f(9GQJ_1)}(2)|=80\),
\(|P_{f(9GQJ_1)}(2) \setminus P_{f(1XDD_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001010111110101010100100110110011001000000111101000000010100010100101110010011110001111001100110001110101001111100101000101011001100111110010000000010011001100110110010010011001000101101
Pair
\(Z_2\)
Length of longest common subsequence
1XDD_1,9GQJ_1
134
4
1XDD_1,4EAJ_1
142
4
9GQJ_1,4EAJ_1
148
4
Newick tree
[
4EAJ_1:74.26,
[
1XDD_1:67,9GQJ_1:67
]:7.26
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{316
}{\log_{20}
316}-\frac{128}{\log_{20}128})=58.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
1XDD_1
9GQJ_1
70
59
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]