Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1XCR_1)}(2) \setminus P_{f(6GHH_1)}(2)|=127\),
\(|P_{f(6GHH_1)}(2) \setminus P_{f(1XCR_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101010110100111110011000110101011001010001101110110100011011111011111000010010011001011111111111111001110001111100000001110100110101101101100000000010011110111001011011010100001110110010001000010011111101110010100011110100011000001001101001011110111110001110101000011000101100000001011001101111011001001000001100
Pair
\(Z_2\)
Length of longest common subsequence
1XCR_1,6GHH_1
172
3
1XCR_1,7HMK_1
203
3
6GHH_1,7HMK_1
177
3
Newick tree
[
7HMK_1:98.10,
[
1XCR_1:86,6GHH_1:86
]:12.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{478
}{\log_{20}
478}-\frac{162}{\log_{20}162})=92.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
1XCR_1
6GHH_1
119
88
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]