Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1WYG_1)}(2) \setminus P_{f(8CLT_1)}(2)|=152\),
\(|P_{f(8CLT_1)}(2) \setminus P_{f(1WYG_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100111110100110001010001110100011101001101011011001110000010001101010101111001001110010111000010110001100010001100111110100110001010100100110101000010011101100110011001101001000100000001010101101001011010001111101101000100010101001011010010011010100101011110001110101001111111011111010011011011011100110110011100110110000011011100101111001001101110110101100101111101101011001000010100011110000110100111010110000101101100100000011010011011101101010010101111100010110001001000100011001011110010111011111101000101011101010110011010100111010101101011100011101011001100000001110111011101010101100001100000101011000010101001000010011111011010011000101110000111000100110111111100100100110110100001111101001100001010010100101001100100110101011100010100000111101011010111000001000011101111100011101001111111000000110011111100010110011000001110110011110001111001011110110100110000100011001110100100110101010100001100011011111011111001100111001111001000010001010010001011011001000110000110000100100000100011011100111010111100111110100010111001100110110001101100110110001010000000110001011010101010110010001100101100001011101111010001101010110001011001000010110010011100010100101000010001110110010111011010111101111101001000101010001100001111101110101011000100011010011101111110011111001101101001001001101001101001001010010010101110000010101
Pair
\(Z_2\)
Length of longest common subsequence
1WYG_1,8CLT_1
176
4
1WYG_1,1TLD_1
228
4
8CLT_1,1TLD_1
196
4
Newick tree
[
1TLD_1:11.73,
[
1WYG_1:88,8CLT_1:88
]:23.73
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1663
}{\log_{20}
1663}-\frac{332}{\log_{20}332})=340.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1WYG_1
8CLT_1
437
270.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]