Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1VNS_1)}(2) \setminus P_{f(7YWM_1)}(2)|=173\),
\(|P_{f(7YWM_1)}(2) \setminus P_{f(1VNS_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101111101001000000011110011101001000111110111101011111011100101010110010011010000110011010110010011111110110010101100101011101000101011111000110111110000101111001101111110010110001001011000100010011111110100101101110000111010000011000001110111100010001000011011111111011000000110010110110010011101101000110011100000001100010010110111110110001111010001010110110110001010010111101111100000111011111010101011111101100000101101000010011101110001011000100100101110001111000110010011011100110011111010101111001111000001011000110110010010000010000001111111111110110011001101011010111000110011100110111000011110011
Pair
\(Z_2\)
Length of longest common subsequence
1VNS_1,7YWM_1
196
3
1VNS_1,2TUN_1
200
4
7YWM_1,2TUN_1
142
4
Newick tree
[
1VNS_1:10.71,
[
7YWM_1:71,2TUN_1:71
]:35.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{771
}{\log_{20}
771}-\frac{162}{\log_{20}162})=171.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1VNS_1
7YWM_1
221
137.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]