Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1USH_1)}(2) \setminus P_{f(7RPN_1)}(2)|=140\),
\(|P_{f(7RPN_1)}(2) \setminus P_{f(1USH_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011001111111001011000111000000001011000000101100001001111000110110001110110111101101001110001001010101101110011111000100110110000011011110101000001001101111100001011111100000101101001001010011001011100100000101111100110000100100111010110111110111111100001101110000010011101001000011111010011001101010100101011000111101000101001000011001011000011011011000101010101100010101000010110001101111101000110111101111000101101000011010111011101010100110010111010100110101101011100101001010101101100001101010101101010100011010011101011010100001101010010101010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{802
}{\log_{20}
802}-\frac{252}{\log_{20}252})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1USH_1
7RPN_1
190
135.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]