Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1UKQ_1)}(2) \setminus P_{f(1AFV_1)}(2)|=178\),
\(|P_{f(1AFV_1)}(2) \setminus P_{f(1UKQ_1)}(2)|=27\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000100000100011001100010010110010111101000010100110101110010010101111011110011001001100011000100101100100001101010010011001010010111011100001100001011001010001011110000000110001100100100110001001101000000101010011011101110110101100111110001110100001110110111110010100001100011011010110010011000000101101110100100101000101100001001000010000100111101000111110010000101100100010110100000100110011110000111101000001100011100001100111111000100110101110011010000111111010010111111100101111101110000010011110111111011101010101110101010110011011011110000101011111111001011011111001000101101001010111001001110011101010011010100111110001100010100010111100101011000100101011100010010010101010101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{837
}{\log_{20}
837}-\frac{151}{\log_{20}151})=192.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1UKQ_1
1AFV_1
241
145.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]