Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1UKJ_1)}(2) \setminus P_{f(7XNZ_1)}(2)|=73\),
\(|P_{f(7XNZ_1)}(2) \setminus P_{f(1UKJ_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100011111001100100100011111111000101011010011101110011010001001010110101101011011111101111100011011011001111001010011110011101110100101101011011101100110100110101011011111011000110111000000101001101110111001000101010101111110011100101011001011110100111110110010101000010101110111001010110011110110001100010011111110101111110011011011001101101001100110100000010001001100111010111001001110100110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{876
}{\log_{20}
876}-\frac{398}{\log_{20}398})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1UKJ_1
7XNZ_1
153
143
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]